Implementation of s-stage Implicit Runge-Kutta Method of Order 2s for Second Order Initial Value Problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient implicit Runge-Kutta method for second order systems

We will consider the efficient implementation of a fourth order two stage implicit Runge-Kutta method to solve periodic second order initial value problems. To solve the resulting systems, we will use the factorization of the discretized operator. Such proposed factorization involves both complex and real arithmetic. The latter case is considered here. The resulting system will be efficient and...

متن کامل

Initial value problems for second order hybrid fuzzy differential equations

Usage of fuzzy differential equations (FDEs) is a natural way to model dynamical systems under possibilistic uncertainty. We consider second order hybrid fuzzy differentia

متن کامل

Order and Stiffness of the Gauss Runge-kutta Method for Initial-boundary Value Problems

Abstract. Existing analysis shows that when the Gauss Runge-Kutta (GRK) (also called Legendre-Gauss collocation) formulation with s Gaussian nodes is applied to ordinary differential equation initial value problems, the discretization has order 2s (super-convergent) [8]. However, for time-dependent partial differential equations (PDEs) with boundary conditions, super-convergence is only observe...

متن کامل

A family of A-stable Runge–Kutta collocation methods of higher order for initial-value problems

We consider the construction of a special family of Runge–Kutta (RK) collocation methods based on intra-step nodal points of Chebyshev–Gauss–Lobatto type, with A-stability and stiffly accurate characteristics. This feature with its inherent implicitness makes them suitable for solving stiff initial-value problems. In fact, the two simplest cases consist in the well-known trapezoidal rule and th...

متن کامل

Avoiding the order reduction of Runge-Kutta methods for linear initial boundary value problems

A new strategy to avoid the order reduction of Runge-Kutta methods when integrating linear, autonomous, nonhomogeneous initial boundary value problems is presented. The solution is decomposed into two parts. One of them can be computed directly in terms of the data and the other satisfies an initial value problem without any order reduction. A numerical illustration is given. This idea applies ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Sciences

سال: 2005

ISSN: 1812-5654

DOI: 10.3923/jas.2005.411.427